HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy
نویسندگان
چکیده
Protein-protein and protein-DNA/RNA interactions play a fundamental role in a variety of biological processes. Determining the complex structures of these interactions is valuable, in which molecular docking has played an important role. To automatically make use of the binding information from the PDB in docking, here we have presented HDOCK, a novel web server of our hybrid docking algorithm of template-based modeling and free docking, in which cases with misleading templates can be rescued by the free docking protocol. The server supports protein-protein and protein-DNA/RNA docking and accepts both sequence and structure inputs for proteins. The docking process is fast and consumes about 10-20 min for a docking run. Tested on the cases with weakly homologous complexes of <30% sequence identity from five docking benchmarks, the HDOCK pipeline tied with template-based modeling on the protein-protein and protein-DNA benchmarks and performed better than template-based modeling on the three protein-RNA benchmarks when the top 10 predictions were considered. The performance of HDOCK became better when more predictions were considered. Combining the results of HDOCK and template-based modeling by ranking first of the template-based model further improved the predictive power of the server. The HDOCK web server is available at http://hdock.phys.hust.edu.cn/.
منابع مشابه
In Silico Prediction and Docking of Tertiary Structure of Multifunctional Protein X of Hepatitis B Virus
Hepatitis B virus (HBV) infection is a universal health problem and may result into acute, fulminant, chronic hepatitis liver cirrhosis, or hepatocellular carcinoma. Sequence for protein X of HBV was retrieved from Uniprot database. ProtParam from ExPAsy server was used to investigate the physicochemical properties of the protein. Homology modeling was carried out using Phyre2 server, and refin...
متن کاملIdentification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation
There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...
متن کاملComparison of Wild Type and Mutated (mHuIFN-β 27-101) Interferon Binding to the IFNRA Receptor by Molecular Docking
Introduction: Interferon beta is one of the members of type I interferons. Creating R27T and V101F mutations is one of the important researches performed to improve function, decrease immunogenicity, increase expression and increase half-life of interferon beta. In this study, the effects of R27T and V101F mutations on interferon beta binding to interferon receptors were studied by molecular do...
متن کاملComparison of Wild Type and Mutated (mHuIFN-β 27-101) Interferon Binding to the IFNRA Receptor by Molecular Docking
Introduction: Interferon beta is one of the members of type I interferons. Creating R27T and V101F mutations is one of the important researches performed to improve function, decrease immunogenicity, increase expression and increase half-life of interferon beta. In this study, the effects of R27T and V101F mutations on interferon beta binding to interferon receptors were studied by molecular do...
متن کاملEffects of Salinispora derived metabolites against multidrug resistance, an in-silico study
Background: Multidrug resistance (MDR) is known to defeat most chemotherapies as one of the main anticancer strategies. The role of overexpression/overactivation of ABC transporters, especially P-glycoprotein (P-gp), in the development of chemotherapy has long been demonstrated. Salinispora is a marine actinomycete genus known for the production of novel bioactive metabolites. Methods: In this...
متن کامل